

Enabling Research for Infrastructure Resilience: An NSF Perspective

Pramod P. Khargonekar

National Science Foundation
Assistant Director *for*Engineering Directorate

NSF ENG: Investing in engineering research and education to foster innovations for benefit to society

Directorate for Engineering

EFRI

Fundamental

CBET

- Chemical & Biochemical Systems
- Bioengineering and Engineering Healthcare
- Environmental Engineering and Sustainability
- Transport, Thermal, & Fluid Phenomena

CMMI

- Advanced Manufacturing
- Mechanics and Engineering Materials
- Resilient and Sustainable Infrastructure
- Operations Design and Dynamical Systems

ECCS

- •Electronics, Photonics, and Magnetic Devices
- Communications, Circuits, and Sensing Systems
- Energy, Power, Control and Networks

EEC

- Engineering
 Research
- Centers
- •Engineering Education
- •Engineering Workforce

Translational

IIP

- AcademicPartnerships
- •Small Business Partnerships

	FY 2014 Actual*	FY 2015 Current Plan	FY 2016 Request	Change over FY 2015 Current Plan	
				Amount	Percent
CBET	\$167.76	\$177.82	\$192.26	\$14.44	8.1%
СММІ	195.23	209.52	222.73	13.21	6.3%
ECCS	100.37	110.43	119.24	8.81	8.0%
EEC	119.50	117.49	110.39	-7.10	-6.0%
IIP	205.99	226.98	248.11	21.13	9.3%
SBIR/STTR	159.99	177.11	194.36	17.25	9.7%
EFMA	44.27	50.07	56.49	6.42	12.8%
ENG TOTAL	\$833.12	\$892.31	\$949.22	\$56.91	6.4%

Critical Infrastructures are a mainstay of the national economy, security and societal functioning

Critical Infrastructure Sectors

Food and Agriculture

Banking and Finance

Chemical

Commercial Facilities

Communications

Critical Manufacturing

Dams

Defense Industrial Base

Emergency Services

Energy

Government Facilities

Healthcare and Public Health

Information Technology

National Monuments and Icons

Nuclear Reactors, Materials and Waste

Postal and Shipping

Transportation Systems

<u>Water</u>

August 18, 2015

Critical Infrastructure and Extreme Events

- In the U.S. and much of the world, these infrastructures are
 - Aging
 - Operating at capacity limits
 - Often vulnerable due to their locations, e.g. in floodplains, along fault lines, proximate to urban areas vulnerable to malicious attack
- Each hurricane or storm sends us a stark reminder of the vulnerability of these infrastructures to extreme events
- Also vulnerable to man-made events

Infrastructure as a (cyber-enabled) Service

Infrastructures are viewed as:

- as networks of systems and processes
- that function collaboratively and synergistically
- that produce & distribute continuous flow of essential goods & services
- as interdependent and connected

Interdependencies

- Dependencies
 - Direct, indirect, disjunctive (depends on >1 node) and conjunctive (depends on one of two nodes) dependenciees
- Interdependencies
 - Physical (e.g. through materials flows)
 - Cyber
 - Geographic
 - Logical (e.g. substitutability, shared resources)
 - → Existence of feedback loop distinguishes from dependencies
- Failures can propagate from one system to the next due to these interconnectivities

Direct and Indirect Interdependencies

Direct interdependency: In a hazard event, emergency services (response/repair) required for restoration of critical services (power/transportation/healthcare...), and critical services enable emergency response/repair activities

(Socio-technical) Indirect interdependency: Electric power loss → water treatment failure → contaminated drinking water → human illness → employees cannot work → fuel not delivered to power plants → further power disruption

Resilience – the Concept

- Resilience as a term has taken on many meanings
- Common to most resilience definitions are two components (DHS):
 - 1) Ability to withstand disruption event with little loss in function
 - 2) Rapidly and efficiently restore functionality if loss incurred
- Many measures have been proposed:
 - Some focus on time to recovery
 - Others focus on <u>loss</u>: post-event performance over time, or after some elapsed time

FY14: Resilient Interdependent Infrastructure Systems (RIPS)

NSE

- To enhance understanding and design of interdependent critical infrastructure systems and processes resilient in the face of disruptions and failures from any cause
- ENG, CISE, and SBE funded 10 projects for \$17M in FY 2014

Image credit: Paul M. Torrens, Geography and UMIACS, University of Maryland, College Park

FY15 CRISP: Critical Resilient Interdependent Infrastructure Systems & Processes

- FY15 funding for CRISP: \$20 million
 - Type 1 Awards: 3-year projects,\$500k max
 - Type 2 Awards: 3-4 year projects,\$1M-\$2.5M

CRISP Program Goals

- Create new approaches/solutions for design/operation of infrastructures as processes/services
- 2. Enhance understanding/design of ICIs and processes under disruptions from any cause
 - natural, technological, organizational or malicious
 - various timescales and intensities
- 3. Create knowledge for innovation in ICIs to safely, securely, and effectively expand range of goods and services they enable
- 4. Improve ICI's effectiveness, efficiency, dependability

Emphasis on Multi-disciplinarity

- Engineering
- Computing
- Social and behavioral sciences

17

Proposal Statistics

RIPS FY14

- 149 Proposals
 - 81 Competitive Projects
 - 369 Researchers
 - 57 Institutions

CRISP FY15

- 145 Proposals
 - 90 Competitive Projects
 - 439 Researchers
 - 90 Institutions

2014 RIPS and 2015 CRISP Awards

Targeted Infrastructures in the Awards

Studied Hazards in the Awards

- Hurricane/wind/flooding
- Earthquake
- Other extreme weather and impacts (sea level rise, storm surge, precipitation, drought)
- Terrorist attack (one study)
- Multi-hazard and compound hazards (one study)

Geographical Areas of Study in the Awards

Cities

- Atlanta
- Boulder
- Indianapolis
- Los Alamos
- Los Angeles
- NYC
- Phoenix
- San Diego
- San Francisco
- Washington DC

States - Regions

- Florida
- Maryland
- New England
- The Northeast
- The Southeast
- Tennessee
- Washington State

International

- Canada
- Japan
- New Zealand

CRISP Proposed Research Topics

- Water-Energy-Food Nexus
- Urban/Rural Infrastructure Resilience
- Autonomous Transportation Systems
- Smart Grid
- Alternative Energy
- Crowd-sourcing
- Community Resilience
- Climate Change
- Attack Scenarios

Methodological Approaches in the Awards

- 1) Mathematical Modeling and Optimization: graph theory; network models; stochastic and nonlinear optimization and modeling; Markov modeling; Bayesian networks; queueing theory; algorithms and heuristics; control theory; game theory; artificial intelligence
- 2) Simulation: agent-based approaches both for discovery and validation

NSE

Methodological Approaches in the Awards

- 3) Statistical: statistical inference (correlation, regression, clustering, natural language processing); expert opinion; attitudinal studies; community surveys; time-geography theory; machine learning; network formation for social networks; behavioral studies of humans;...
- 4) Reliability and systems modeling
- 5) Systems of systems and explanatory sciences

Emerging Directions

- Multiple temporal and spatial scales
- Real-time monitoring and control
- Stochastic and dynamic interdependencies
- Water-Energy-Food Nexus (INFEWS)
- Society and governance as infrastructures
- New services
- Leveraging interdependencies to prevent or halt cascading failures
- Modular design to disconnect systems for real-time failure prevention

- Root-cause analysis from observed damage
- Prescriptive/normative models
- Community resilience considering long-term societal impacts (e.g. demographic shifts due to long-term losses in infrastructure services)
- Rural, urban, suburban issues
- Decentralizing services
- Role of social media (extensive coverage, potential inaccuracies) in monitoring/information dissemination

- Multi-functional system elements, e.g. end users as consumers and producers in the smart grid
- Multi-hazard (simultaneous)
- Workforce as an infrastructure or flows in and between infrastructures
- Role of humans in infrastructure

Potential Outcomes

- Major advances arising from "infrastructure as a cyberenabled service" paradigm
- Deeper understanding of resilience in infrastructure systems
- Cross fertilization of ideas, techniques and solutions for improved resilience from multiple directions and infrastructures
- Collections of data sets
- Development of new fields of study and knowledge

Cyber-Physical Systems

NSE

- Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components
- NSF aims to develop the core system science needed to engineer complex cyber-physical systems upon which people can depend with high confidence.
- ENG, MPS, DHS, DoT contributed \$35M in FY 2014

Credit: CURENT Engineering Research Center

CPS Approach

- Abstract from application sectors to more foundational principles
- Apply these principles to problems in new sectors
- Safe, secure, reliable, verification, real-time adaptation, ...
- Applications to infrastructure systems

Big Data: Dynamic Data Systems

- Collaboration between ENG/ECCS and AFOSR
- Big data and computing issues arising from dynamic sensing and control in engineered and natural systems

Thematic areas

- Dynamic data from ubiquitous sensors and controllers
- Large scale distributed
 computing for dynamic data
- Interactions between data
 and computing in this context

Thanks to the Cognizant Program Officers

Thank you!

Questions? Comments?

pkhargon@nsf.gov

August 18, 2015 35